If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2=80
We move all terms to the left:
k^2-(80)=0
a = 1; b = 0; c = -80;
Δ = b2-4ac
Δ = 02-4·1·(-80)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*1}=\frac{0-8\sqrt{5}}{2} =-\frac{8\sqrt{5}}{2} =-4\sqrt{5} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*1}=\frac{0+8\sqrt{5}}{2} =\frac{8\sqrt{5}}{2} =4\sqrt{5} $
| (3x-3)=(56-3x) | | 17/8y=2/9 | | x+5=8,x | | 2d+36=-3d-54 | | -9(y+4)=-7y-2y-9 | | -2(2t+1)=-2 | | 16÷(8+8)=h | | 7/10x+13=3/10x-13 | | 96t^2=54 | | n^2–39n=0 | | 7m-9=-30 | | -7+2k=7 | | 34x+x-5=10+2x | | 1/2(p-6)=-5 | | -m-6=15 | | 4(x+3)2−9=−29 | | 5x-355=0 | | -4(32x−12)=−15 | | 3/x+3-1/x-2=5/2x+6 | | 9(7x+7)=-1 | | -4p-9+5p=4 | | 45f-3=1 | | 8y+6=86 | | -m-6=30 | | 1.75x+12=30 | | 2m-58=36 | | 3x+41+x-13=180 | | x/3+x−2/5=6 | | (1/3)d+100=1.25d-10 | | -m-9=30 | | 6(x+2)-3(x/2-1)=51 | | -10=-26+8y |